



# Cybersecurity 701

Passwords Lab



# Passwords Materials

- Description of the lab
- Materials needed
  - Kali Linux Machine
- Software Tools used
  - Leafpad



# Objectives Covered

- Security+ Objectives (SY0-701)
  - Objective 2.4 - Given a scenario, analyze indicators of malicious activity.
    - Password attacks



# Password Lab Overview

1. Set up Environment
2. Navigate to Shadow
3. Exploring the Kali Password
4. Creating a User
5. Creating a Password
6. Moving the Password
7. Testing the Password
8. On Your Own Activity



# Set up Environment

- Log into the cyber range
- Open the Kali Linux Environment
  - You should be on your Kali Linux Desktop
  - Open the Terminal



# Navigate to Shadow

- Make yourself the root user:  
`sudo su -`
- Change directory to the etc folder:  
`cd /etc/`
- Display all the directories within /etc:  
`ls`
  - You should be able to see the shadow file
- Read the Shadow file where the passwords are stored:  
`cat shadow`

```
(kali㉿10.15.55.196) - [~]
$ sudo su -
```

```
(root㉿10.15.55.196) - [~]
# cd /etc/
(root㉿10.15.55.196) - [/etc]
# ls
NetworkManager          modules-load.d
ODBCDataSources          motd
OpenCL                   mtab
UPower                  mysql
X11                      nanorc
adduser.conf              netconfig
aliases                  netsniff-ng
alsa                      network
alternatives              networks
apache2                  nftables.conf
apparmor                 nginx
apparmor.d                nikto.conf
```

```
(root㉿10.15.55.196) - [/etc]
# cat shadow
root:$6$ZE6UeF0KzKm60$I2/jnJLiLtGgn.P3E1Sp1EtJ2o2mE5fmT3I
0dJfqDevkzXLPGLjcVoBrIgk3Hll6sYxljFnbuyZZYnPzyrwEF/:19373:0:
99999:7:::
daemon:*:18775:0:99999:7:::
bin:*:18775:0:99999:7:::
sys:*:18775:0:99999:7:::
sync:*:18775:0:99999:7:::
games:*:18775:0:99999:7:::
man:*:18775:0:99999:7:::
lp:*:18775:0:99999:7:::
mail:*:18775:0:99999:7:::
news:*:18775:0:99999:7:::
```

Notice that the users root and kali have passwords stored



# Exploring the Kali Password

- Take a look at the kali password\*
  - Remember, “password” is the password\*

```
systemd-timesync:!*:18856:::::  
systemd-coredump:!*:18856:::::  
kali:!$6$4bC23/N1kUbLIUgw$7/HQXyWKlyUnEnx81t8jkRLeyp056BTPL4  
DzN4l5jkobVB6/m3z7St3WfKcUNm6eUqaSA4hKkWtqV9C.zPnA5.:19275:0  
:99999:7:::  
tss:!*:18856:0:99999:7:::  
rtkit:!*:18856:0:99999:7:::
```



What does all this mean?

\*Please Note: The username/password combination can differ depending on the range/environment you are using



# Exploring the Kali Password

- Take a look at the kali password
  - Remember, “password” is the password

```
systemd-timesync:!*:18856:::::  
systemd-coredump:!*:18856:::::  
kali: $6$4bC23/N1kUbLIUgw$7/HQXyWKlyUnEnx81t8jkRLLeyp056BTPL4  
DZN4L5jkobVB6/m3z7St3WfKcUNm6eUqaSA4hKkWtgV9C.zPnA5.:19275:0  
:99999:7:::  
tss:!*:18856:0:99999:7:::  
rtkit:!*:18856:0:99999:7:::
```

The user's name



# Exploring the Kali Password

- Take a look at the kali password
  - Remember, “password” is the password

```
systemd-timesync:!*:18856:::::  
systemd-coredump:!*:18856:::::  
kali: $6$4bC23/N1kUbLIUgw$7/HQXyWKlyUnEnx81t8jkRLeyp056BTPL4  
DzN4l5jkobVB6/m3z7St3WfKcUNm6eUqaSA4hKkWtgV9C.zPnA5.:19275:0  
:99999:7:::  
tss:!*:18856.0:99999:7:::  
rtkit:!*:18856.0:99999:7:::
```

The Hash Algorithm

(Here it is 6, thus using SHA-512 Algorithm)

\$1\$ → MD5

\$5\$ → SHA-256

\$2\$ → Blowfish

\$6\$ → SHA-512

\$2a\$ → ekaBlowfish



# Exploring the Kali Password

- Take a look at the kali password
  - Remember, “password” is the password

```
systemd-timesync:!*:18856:::::  
systemd-coredump:!*:18856:::::  
kali:!:6$4bC23/N1kUbLIUgw$7/HQXyWKlyUnEnx81t8jkRLeyp056BTPL4  
DzN4l5jkobVB6/m3z7St3WtKcUNm6eUqaSA4hKkWtgV9C.zPnA5.:19275:0  
:99999:7:::  
tss:*:18856:0:99999:7:::  
rtkit:*:18856:0:99999:7:::
```

The Salt

What is the purpose of a salt? Why is this important for security?



# Exploring the Kali Password

- Take a look at the kali password
  - Remember, “password” is the password

```
systemd-timesync:!*:18856:::::  
systemd-coredump:!*:18856:::::  
kali:!:6$4bC23/N1kUbLIUgw$7/HQXyWKlyUnEnx81t8jkRLeyp056BTPL4  
DzN4l5jkobVB6/m3z7St3WfKcUNm6eUqaSA4hKkWtgV9C.zPnA5.:19275:0  
:99999:7:::  
tss:!*:18856:0:99999:7:::  
rtkit:!*:18856:0:99999:7:::
```



The Hashed Password

What is a hashed password and why are passwords stored like this?



# Exploring the Kali Password

```
systemd-timesync:!*:18856:::::  
systemd-coredump:!*:18856:::::  
kali:!$6$4bC23/N1kUbLIUgw$7/HQXyWKlyUnEnx81t8jkRLLeyp056BTPL4  
DzN4l5jkobVB6/m3z7St3WfKcUNm6eUqaSA4hKkWtgV9C.zPnA5.:19275:0  
:99999:7:::  
tss:!*:18856:0:99999:7:::  
rtkit:!*:18856:0:99999:7:::
```

- Thus, passwords are stored in the following format:

username: \$hash number\$salt\$hashed password:

- Kali has the following data:
  - username = kali
  - Hash Algorithm = 6 or SHA-512
  - Salt is '4bC23/N1kUbLIUgw'
  - Hash is  
'7/HQXyWKlyUnEnx81t8jkRLLeyp056BTPL4DzN4l5jkobVB6/m3z7St3WfKcUNm6eUq  
aSA4hKkWtgV9C.zPnA5.'
  - Plaintext password is 'password'



# Creating a User

- Create a new user with the same hash and password as ‘kali’
- Create a new user:
  - `useradd johnsmith`
- Now, check out johnsmith’s data:
  - `cat shadow`
- Notice, that johnsmith has a “!” where the password should be stored

```
└─(root@10.15.55.196) - [/etc]
  # useradd johnsmith

└─(root@10.15.55.196) - [/etc]
  # cat shadow
root:$6$ZE6UeFEDf0KzKm60$I2/jnJLiLtGgn.P3E1Sp1EtJz
LPLGJjcVoBrIgk3Hll6sYxljFnbuyZZYnPzYrwEF/:19373:0:
daemon:*:18775:0:99999:7:::
bin:*:18775:0:99999:7:::

```

## No stored password

```
...  
colord:*:13856:0:99999:7:::  
nm-openconnect:*:18856:0:99999:7:::  
johnsmith:!:19543:0:99999:7:::
```



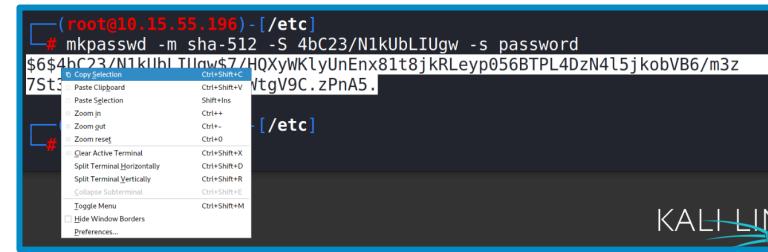
# Creating a Password

- Use the following command to make the same password as the kali account:

```
mkpasswd -m sha-512 -S <YOUR SALT> -s password
```

Method SHA-512  
Salt is 4bC23/N1kUbLIUgw  
Password is password  
(-s stands for standard input)

Make password


```
(root@10.15.55.196) [/etc] # mkpasswd -m sha-512 -S 4bC23/N1kUbLIUgw -s password  
$6$4bC23/N1kUbLIUgw$7/HQXyWklyUnEnx81t8jkRLeyp056BTPL4DzN4l5jkobVB6/m3z7St3WfKcUNm6eUqaSA4hKkWtgV9C.zPnA5.
```

Notice, the password created is the same as the original user



# Moving the Password

- Highlight the entire password
- Right-click, and select “copy selection”
- Open shadow in Leafpad:  
`leafpad shadow`
- Navigate to user johnsmith
- Delete the exclamation mark
- Paste in the password
- Save and exit Leafpad!



johnsmith:!:19543:0:99999:7:::

Only replace the '!'

johnsmith:\$6\$4bC23/N1kUbLIUgw\$7/HQXyWKlyUnEnx

Please Note: If Leafpad is not able to open the display while logged in as the root user, use the following command to open the text in the nano editor:  
`nano shadow`



# Test the password

- Open a new Terminal (should not be root access)
- Switch user to johnsmith:
  - **su johnsmith**
- When prompted, enter the wrong password
  - Do not type in ‘password’
- You should see “Authentication failure”
- Switch user to johnsmith:
  - **su johnsmith**
- Now type in ‘password’ as the password
  - You should notice that it gave you access to johnsmith account!

```
(kali㉿10.15.55.196) - [~]
$ su johnsmith
Password:
su: Authentication failure

(kali㉿10.15.55.196) - [~]
$ su johnsmith
Password:
$ █
```



# On Your Own Activity

- Try and make passwords for the following:
  1. Create your own SHA-512 password with a different salt
  2. A different password using MD5 Algorithm (-m md5)
  3. Another password using SHA-256 Algorithm (-m SHA-256)
- Here was the command we used to create the kali password:  
`mkpasswd -m sha-512 -s 4bC23/N1kUbLIUgw -s password`
- Remember to check to make sure the password works!

